If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1350-90x+0.5x^2=0
a = 0.5; b = -90; c = +1350;
Δ = b2-4ac
Δ = -902-4·0.5·1350
Δ = 5400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5400}=\sqrt{900*6}=\sqrt{900}*\sqrt{6}=30\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-30\sqrt{6}}{2*0.5}=\frac{90-30\sqrt{6}}{1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+30\sqrt{6}}{2*0.5}=\frac{90+30\sqrt{6}}{1} $
| F(x)=-15+5x | | F(0)=x(18-x) | | (x-20)+(3x+6)=90 | | x=(9x−4)−(2x−7) | | 1350-45x+0.5x^2=0 | | (2+5)+6=n+(5+6)=n | | (2x-5)+(4x-7)=180 | | 10*(5+8)=(10*n)+(10*n) | | 3.25x+9=10.5625+3x | | 15*(8-n)=(15*8)-(15*4) | | 15*(8+n)=(15*8)-(15*4) | | 12+4+n=25 | | (13+6)+n=(6+8) | | (12*n)*3=12*(4*3) | | n*(3-2)=12 | | (2*3)+(2*n)=2*(3+6) | | (2+5)+6=n+(5+6) | | X=(8x-31) | | 20x=8x+12 | | -2(x^2-7)+5=23 | | 32=x^2/2 | | 7q+990=5q+10^3 | | 6y=×+11 | | 9m+4=6m-32 | | 3÷x=150 | | 23=3w=5 | | (–2s+10)(–5)= | | 1x–10=11–2x. | | 1388x+382=44 | | 2x3x=360 | | 72=((4x)x)/2 | | 20–2r=6 |